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Abstract 

This paper provides a comprehensive review of the propagation of ultrasonic waves in anisotropic porous materials. The 

equivalent fluid model (or Allard-Johnson theory) which is relevant for air-saturated porous media is described. It takes into 
account viscous and thermal losses occurring during the movement of the fluid within the motionless solid frame. When the 
skeleton is moving as well, the coupled Biot theory should instead be used. This theory becomes intricate when anisotropy is 
considered due to a very large number of physical parameters to be determined. A strong formal correspondence between the 
anisotropic Biot wave and the thermal wave of dynamic thermoelasticity in non-porous media is outlined. Standard ultrasonic 
methods. generally used at low frequency (i.e. 20-500 kHz) are very effective in order to characterize anisotropy in porous media. 
Both reflection and transmission configurations have been used. Special attention has been devoted to the measurements of the 
anisotropic tortuosity, but also to the viscous and thermal characteristics lengths. Finally, some inverse problems related to these 
measurements are solved and others. which are still open, are presented. Q 1998 Elsevier Science B.V. 

K~JwMY~~: Anisotropy: Allard theory; Biot theory; Thermal wave; Reflection coefficient: Transmission: Anisotropic tortuosity; 
Characteristic lengths 

1. Introduction 

Porous media filled with air, such as plastic foams, 
fibrous mats and various felts, are heavily used in the 

automotive, aeronautical and building industries to 
damp and attenuate sound waves. During the last 5 
years, low frequency (i.e. in the range 20-500 kHz) 

ultrasonic techniques have amply proven to be an invalu- 
able tool to probe and decipher the intricacies of the 
acoustical properties of these materials. 

The present review starts by briefly exposing some of 
the present theoretical models. One distinguishes the 
two basic cases where the solid frame is moving or not. 
The first case refers to the Biot theory [1,2], where the 
coupling is responsible for the existence of an additional 
slow longitudinal wave. It can be easily observed with 
porous structures saturated by an heavy fluid (such as 
water). For air-saturated porous materials, the Biot 
theory is often required to describe the acoustics of 
layered materials including porous, elastic and visco- 
elastic media. We shall restrict ourself in this review to 
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homogeneous porous single layer, because the acoustics 

of layered media including porous materials is well 
known, as seen from the available literature. For the 
simple case of a motionless skeleton (i.e. for a single 
porous layer), one can use the Johnson-Allard theory 
[3] which concentrates on the porous material seen as 
an ‘equivalent fluid’ [4,5]. 

Often, porous media are anisotropic and this feature 
adds complexity in terms of the description, increasing 
the number of independent physical parameters that are 
required in the model. For instance, for a thin layer of 
porous medium of hexagonal symmetry (i.e. being trans- 
versely isotropic), the Biot description necessitates 11 
parameters (five elastic constants, two Biot coupling 
coefficients, the compressibility of the fluid, and three 
densities for the fluid, the frame and the coupling term). 

Various numerical and experimental results are also 
presented. Emphasis is given to the anisotropic version 
of the Johnson-Allard model because it is the case which 
is most commonly encountered with air-saturated 
porous materials. For such a case one needs to determine 
five parameters: the porosity 4, the flow resistivity q/k,, 

the tortuosity c(, the viscous and the thermal characteris- 
tic lengths /1, A’ (see the next section for further explana- 
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tion; nomenclature is given at the end of the paper). 
For a material having hexagonal symmetry there are 
instead eight parameters. Reflection and transmission 
coefficients are studied in some details. A section is 
devoted to the theory of dynamic thermoelasticity 
because of the strong analogy between such model and 
the Biot theory (as suggested 40 years ago by M.A. Biot 
himself ). The fit between theoretical predictions and the 
available experimental data is generally excellent, ena- 
bling in turn one to solve various inverse problems (e.g. 
to accurately determine some of the above parameters). 

2. Theory of the equivalent fluid 

In this model, one begins by dealing with the two 
fundamental equations of linear acoustics in an isotropic 
porous medium, which, respectively, are the Euler equa- 
tion and the equation of mass conservation associated 
with the behavior (or adiabatic) equations, as written 
below: 

In these equations p and v are the acoustic pressure and 
the acoustic particle displacement derivative (by the 
term ‘acoustic’ we denote the small difference of these 
quantities, around the values of the parameters at rest, 
which are due to the acoustic wave). The wavespeed in 
the porous material is then derived from these two 
equations by elementary manipulations and yields the 
usual standard equation: 

with K, = yP,,, and where U(W) and B(o) are, respectively, 
the dynamic tortuosity and the relative dynamic com- 
pressibility of the fluid included in the porous media. 
These two response factors are complex functions which 
heavily depend on the frequency. They take into account 
the inertial interaction between the fluid and the skeleton 
of the porous material and the viscous and thermal 
losses which are localized at high frequencies at the 
boundary between the two domains. The theoretical 
expressions for such quantities are given in Refs. [ 5,6]: 

(4) 

(5) 

where 

and 

w+ko _y---- 
8k; 

rlPr# ’ 
M’=- 

fjflr2 

(6) 

(7) 

In these expressions j = fl, u =2r$ represents the 

angular frequency, 7 the ratio of specific heat (or adia- 
batic constant), 9 the fluid viscosity, Pr the Prandtl 

number, pf the density of air at rest, 4 the porosity, k, 
the static permeability, kb the thermal permeability, CI, 
the tortuosity, A and /1’ the viscous and thermal charac- 

teristic lengths [7-91. Eq. (4), in a slightly different form 
due to the + sign convention in the exp(jot) term, was 
originally introduced in 1987 by Johnson in a seminal 
paper [lo] which described the damping of acoustical 

waves in a porous material caused by viscous effects. 
Subsequently, other authors did study with similar tools 
the acoustics of porous media (e.g. Refs. [ 11,121). 

Such a model was then extended in 1992 by Allard 
and Champoux [ 131 to include the thermal effects 

[Eq. (5)]. The parameter k& in Eq. (7) was introduced 
by Lafarge [5] to describe the additional attenuation of 
the acoustical waves due to thermal exchanges taking 
place at the surface of the pores. This last parameter 

cannot be easily measured by a nonacoustical technique. 
In practice, the M’ parameter is chosen to be equal to 
one which is the exact value for a material with parallel 
cylindrical pores. This approximation is valid for a large 
number of porous acoustical materials. When dealing 
with ultrasound where the viscous skin depth 6 is small 
compared to the characteristic lengths, the a(o) and 
p(o) functions are developed as: 

a(co) = a, (l+(l-,i);), 

/I(o)=y-(“-1) I 

with 

(8) 

(9) 

6= 2vl J PfW 

and B=fi,which provide the wavespeed at high fre- 
quencies: 

c(0) = &[l-$+S)] (10) 
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with 

K 

J- 
(‘()= - 

Pf 

which is the sound velocity in air at rest. 
The validity domain of the high frequency approxima- 

tion is visualized in Fig. 1, taken from Ref. [ 141, for the 
real part of the relative dynamic compressibility. One 
can observe that above lo-15 kHz the asymptotic 

expressions of the relative dynamic compressibility are 
sufficiently precise. Moreover, a comparison at low 

frequencies (in the audio range) between the complete 
model (with no high frequencies approximation) is 
shown for a fibrous material on Fig. 2 taken from 

Ref. [ 151. 

Fig. 1. Real part of the dymanic compressibility. ( ---) No approxi- 

mation; (- - -) high frequency approximation. The parameters used 

in the calculations are: zm= 1.2; 9=0.98; A= 1.2 x IO-” m, 

A’=5.Ox IO ‘m. 

0 1000 2000 3000 4000 

Frequency (Hz) 

Fig. 2. Real part of the surface impedance for a fibrous material as 

determined with the TMTC method. The physical parameters used in 

the numerical simulation are the following: Q ==0.99; (q/k,)= 

6442Nm “5 ‘;~,=l.00;A=1.66x10~4m;A=4.98x10~4m.The 

solid line represents the numerical results, and the dots the experimen- 

tal data. 

3. Anisotropic parameters of the model 

When anisotropy is present, the above model should 
be modified accordingly. A major difference stems from 
the response factor x(w) which becomes a second rank 
tensor as stated by the modified Euler equation: 

(’ vj 
PGijCco) 1 = -Pip, (11) 

whereas Eq. (2) is unaffected. Neglecting viscous losses, 
diij(o) is a real symmetric tensor. This important sym- 

metry property can be shown by using energy consid- 
erations completely analogous to those used in electro- 

dynamics for demonstrating the symmetrical character 
of the dielectric tensor of a medium. Thus, the tortuosity 
tensor diagonalizes in a system of three orthogonal axes 
_ the so-called principal axes. In the general case where 
viscous losses are present, the symmetry of the complex 
tensor diij(w) is maintained and can be viewed as an 

example of the general Onsager’s reciprocity rules. 
However, the real and imaginary part of the tensor 
jiij(w) need not diagonalize in the same system of 
principal axes. Moreover, the principal axes themselves 

may be frequency dependent. Such dispersion of the 
principal axes does not occur a priori for transversally 
isotropic materials such as the ones studied in this paper. 
In addition, ultrasonic measurements lie in the high- 

frequency regime where the imaginary part of the ten- 
sors diij(W) is small compared to the real part. The shape 
of this tensor is in the general case an ellipsoid, which 
is quite analogous to the index of refraction tensor in 
the optics of crystals. The intersections of this 
sheet along the principal acoustic axes of the porous 
solid provide the three principal values of the tensor. 
Because we restrict ourself here to hexagonal anisotropy, 
there is a plane which should be isotropic. It is noted 
as plane p, and the normal plane to it by n. The 
tortuosity tensor assumes the following form: 

XP(CO) 0 0 

diij(W)= 0 

i i 

a,(o) 0 (12) 

0 sI"((~~) 

With the same notation on hand for the two principal 
acoustical axes (p for in plane, and n for normal to the 
porous layer), the ~(0) response function is then defined 
by the following expression: 

Xk(~~) = x, (l+&Jl+sjXk), k=n,p. (13) 

where the X, and Mk parameters are given by 

k 
x, = 

uC(mkPf Ok 8kokhk 

V$ 
; Mk=- 

lpn: . 
(14) 
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The j?(w) response function is unchanged, as given 

by Eq. (5). 
The wavevector in the transversely isotropic case, is 

expressed by the two components: 

with 

(15) 

kk=co J Pf4AWM~) 

Ka ’ 
k = n,p, (16) 

where k, and k, denotes the components of the wavevec- 
tor in the fluid saturating the structure (the propagation 
lying in plane xz, where z stands for the normal II and 
x for the in-plane orthogonal axis p). In terms of the 
physical parameters of the porous materials, beside the 
tortuosity which becomes anisotropic, the porosity and 
the thermal characteristic length remain scalars and thus 
are still isotropic. On the other hand, the flow resistivity 
q/k,, and the viscous characteristic length become aniso- 
tropic as well, and this point is discussed in the next 
section. 

4. Measurements of the coefficient of reflection 

When dealing with short ultrasonic signals (typically 
lasting a few microseconds), the reflection coefficient at 
the boundary of an isotropic porous slab is then given 

by [I41 

cos fl k,$ 
--- 

Ri = Zf M-m 
cos 8 + M -- 

& k&, 

(17) 

where Zf and Z,, which are respectively the characteris- 
tic impedances of the fluid outside and inside the porous 
media, take the following forms: 

Zf=Pfco, -L= 
J 

pfKaa(w) 

B(w) . 

(18) 

In this case, the interferences between the multiple 
reflections in the porous material does not exist when 
the duration of the signal is lower than the quantity 
[2L/c(o)]. It should be noted that in the audible fre- 
quency range, such interferences must be taken into 
account. One must use a theoretical reflection coefficient 
calculated from the combination of the transfer matrix 
of a porous media immersed in air with the appropriate 
boundary conditions [6]. For a transversally isotropic 

Rotation II 

7 --i Rotation I 

Fig. 3. Schematic diagram of the experimental set-up in the reflection 

configuration. 

material, the reflection coefficient is given by Eq. (17) 
with Z, = Z, and a(w) = xx,(o), where Z,, is the character- 
istic impedance of the saturating fluid along the normal 
direction. 

A critical angle Ho where the reflection coefficient is 
equal to 0 is calculated when frequency tends to infinity: 

(19) 

Reflection coefficient measurements in air are greatly 
facilitated by using ultrasonic techniques, as is reported 
in this work (also see Ref. [ 161). The reflection coefficient 
measurements versus the incidence angle have been 
performed with an ultrasonic reflectometer designed at 
LAUM (Fig. 3). Because of the very weak signals 
obtained after reflection, a 5058PR pulser-receiver from 
Panametrics which provides 900 V peak-to-peak and a 
90 dB dynamic range has been used. The signals cap- 
tured by a 9310 LeCroy digitizing oscilloscope were 
processed by a Macintosh Quadra 950 computer running 
LabVIEW 3.0. The amplitude measurements were per- 
formed in the Fourier domain by using the amplitude 
spectrum. A precision of the order of 1% was achieved. 
The comparison between theory and experiments (a 
characteristic example is shown in Fig. 4) shows that 
when the material is assumed to be isotropic the 
agreement is poor. When anisotropy is taken into 
account, which should definitely be done for the Tramico 
material as can be seen (in the caption of Fig. 4 from 
the values of the tortuosity along the principal direc- 
tions), the agreement becomes fair. Other materials 
tested in the same way exhibit a similar trend in the 
results. 

5. Transmission coefficient when the frame is motionless 

The coefficient of transmission of an isotropic porous 
slab of thickness L when the frame is motionless is 
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Angle of mcidence (“) 
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Fig. 4. Reflection coetlicient versus incidence angle. Comparison 

between theoretical and experimental values. The theoretical values 

are computed with the following parameters: ( 1) when the material is 

assumed to be isotropic (dashed line) (q/k,)=5000 N m-4 s-‘; $= 

0.98; n=l.2x IO-“m; n’=5x 10m4m; x,=1.2; and (2) when it is 

assumed to be anisotropic (continuous line) (t&,) =4900 N m 4 
sm’; (q/k,,,)=6900N m-‘s-‘: 4=0.98; A,=2.2~10~~m: ,4,=2.0 

x IO-“m; ,4,=5x IO-“m; r,,=l.2: a,,=1.4. 

defined, in the high frequency assumption which is 

relevant with ultrasound, by a very simple relationship 
(e.g. see Refs. [ 14,171): 

4k,cj cos 8 

T, = -+Gk e-jk,I. 
(cos ti k,# \’ ’ 

(20) 

L 
~ - 
Z,. + k,Z,) 

with 

z, =pfcoa 1 + [ ?!$(f_K?)], (21) 

and where Z,=p&, represents the characteristic imped- 
ance of air. 

In most cases, for absorbing porous materials, the 
porosity as well as the tortuosity are close to 1. It is 

then evident to note that (a/$) + (b/j&) = 2, when 
the porosity is between 0.9 and 1, and the tortuosity 
smaller than 1.4. Accordingly, with the help of that 

approximation, there exists a simplier form of the trans- 
mission coefficient as given by 

liz r;=exp(-zVG$f(‘;+s)]L). (22) 

This last expression indicates that the transmission 
coefficient is directly linked to the tortuosity as well as 
to the characteristic lengths. A complete discussion on 
this question can be found in Ref. [ 181. Furthermore, a 
detailled analysis of the two-dimensional scan images 
(see Fig. 5 for a sketch of the configuration and refer to 
Refs. [ 14,181 for such experimental two-dimensional 

scans) unambiguously demonstrate that there exists a 
strong correlation between the spatial variations of the 

tortuosity and those of the transmission coefficient; this 

result in turn is directly predicted from Eq. (22). From 

that same equation, it is then possible to numerically 

recover the two-dimensional scan image of the transmis- 
sion from those of the experimental tortuosity. This 
comparison is not really satisfactory. Some losses are 
responsible for the inadequate comparison, because the 

experimental transmission coefficient is systematically 
below the theoretical predictions made from Eq. (22) 
with the appropriate material parameters (here the 

tortuosity and the characteristic lengths). An example 
is provided in Fig. 6 showing that the recovered viscous 
characteristic length is 40% smaller than its actual value 
as determined by other independent methods. When 

anisotropy is present the transmission coefficient at 
normal incidence is simply provided by Eq. (20) where 

k, = k, and Z, = Z, (see Ref. [ 141, p. 99 for further 
details). 

6. Anisotropy of the tortuosity 

Some measurements of the dynamic tortuosity have 
been performed with narrowband piezoelectric transduc- 
ers on reticulated plastic foams. Some preliminary results 

have been reported [ 191. Further experimental results 
related to the anisotropic nature of the material have 
been obtained by probing the tortuosity versus transmis- 
sion angle [20]. A simple numerical routine has been 
implemented in order to recover the tortuosity along 

principal directions. These predicted values compare 
well with measurements done directly along the principal 
acoustic axes of the samples. Slight angular deviations 
of the principal axes themselves have also been observed. 

Air-saturated materials are, to some extent, aniso- 
tropic. An indirect way to characterize such anisotropy 

was recently achieved by measuring the coefficient of 
reflection versus incidence angle for reticulated plastic 
foams (as discussed in Section 4). The comparison 
between the experimental data and the results drawn 
from the Johnson-Allard theory is adequate only when 
some anisotropy of the relevant parameters is taken into 
account. Furthermore, the predicted anisotropic param- 
eters were in good agreement with the measured values. 

The amount of anisotropy that is observed in reticu- 
lated plastic foams is slight, in the order of lo-20%. In 
fact, these materials are also heterogeneous, and the 
acoustical properties depend on the location which is 
probed. The observed variations of the phase wavespeed 
and transmission coefficient at normal incidence are 
again in the range of lo-20%. The next idea is to 
introduce experimental routines which may decipher the 
influence of anisotropy and heterogeneity which are of 
the same order of magnitude. One can define the real 
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Fig. 5. Schematic of the experimental system for the transmission configuration and two-dimensional scan 
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Fig. 6. Transmission coefficient versus frequency. The predicted values 

(--- ) are obtained with ,4 = I .4 x 10e4 m, while those with the linear 

regression (- - -) yields A = 1.05 x 10e4 m. The parameter A’ is deter- 

mined with the BET method [8,9]. 

part of the acoustical propagation n(o) index as 

= Re(m) , (23) 

where cO and c(o) are, respectively, the phase wavespeed 
of sound in air and in the fluid saturating the material. 
When frequency tends to infinity, the squared propaga- 
tion index is equal to 

(24) 

When the measurement of the propagation index is 

done at sufficiently high frequency (where 6 tends to 

zero), the value of the tortuosity is then given by a 

simple wave speed measurement. 

Additionally, due to dispersion, the dynamic tortuos- 

ity is frequency dependent. This feature is well docu- 

mented for water-saturated media such as rocks or 

ceramics [21-261. These measurements make use of a 

routine based on the phase spectrum [27]. The influence 

of dispersion can be drastic in some cases with water- 

saturated samples. Air-saturated porous materials, how- 

ever, exhibit slight dispersion [28]. Consequently, the 
change of the tortuosity with frequency is generally 

small. Some characteristic results obtained with a reticu- 

lated plastic foam of the Tramico type are given in 

Table 1. The results along two principal directions, i.e. 

the out-of-plane direction which is along the axis normal 

to the surface of the sample (axis 3), and the in-plane 

direction (axis 1) which lies in the plane of the sample, 

are different. The material is assumed to be transversely 

isotropic or having hexagonal symmetry, meaning in 

turn that the in-plane properties are isotropic. Then the 

Fresnel relation can be obtained by using a reasoning 

Table I 
Values of the coefficient of tortuosity for the Tramico plastic foam at 

various frequencies, along two principal directions (in-plane and out- 

of-plane) 

Frequency (kHz) Tortuosity (out-of-plane) Tortuosity (in-plane) 

40 I .23 1.33 
75 1.21 1.32 

180 I .20 1.31 

% I.17 1.30 



similar to that used in crystal optics. 

;_[Re[F)]=F+%&. (25) 

Let us consider a monochromatic plane wave propa- 
gated along the direction of the unit wave normal IV, 
i.e. described by the factor 

exp[l(n(~~~ W-r)] 
Substituting this dependence in Eqs. ( 11) and (2) we 

obtain 

Eliminating p in Eq. (26) and making use of coordinate 
axes coincident with the principal axes of the tensor 
diij((u) gives the three equations: 

?I2 
ri = - ,z’$‘. " 

Pxi 

(i=s,_v,z). (27) 

Multiplying Eq. (27) by it’s and adding the three resulting 

equations we obtain 

where $ (i=.\-, I’, Z) h* dve been defined by analogy with 
the isotropic case, such that n’ = cQ. Let us now consider 

the above complex index which assumes the form 
n = n,( 1 i-j;), where i << 1, and similar expressions for 
each of the ni. In fact, based on the Johnson et al. [lo] 
and Allard-Champoux [ 131 high frequency limits for “A 
and b, typical values for our materials are i~O.05 at 

40 kHz. Thus from Eq. (28) and the definition of the 
phase velocity c(~) we obtain 

In other words, the principal tortuosities being the 
intersection of the ellipse with the principal axes. A very 
simple but efficient inversion scheme can be implemented 
which makes use of a linear regression routine, in order 
to determine the principal tortuosities from measure- 
ments of the tortuosity tensor performed along numer- 
ous nonprincipal directions of propagation. The 

recovered values can then be directly compared to those 
contained in Table 1. 

Experiments were carried out on a large panel 
(0.3 x 0.4 m) of a 50 mm thick layer of a reticulated 
plastic foam of the Tramico type. The measurements 
were performed by using a reflecto-refractometer. The 
configuration of the instrument which has been used in 

Translation 

transmitter 

Receiver 

Fig. 7. Schematic diagram of the experimental set-up in the transmis- 

sion configuration. 

the present work is outlined in Fig. 7. The experimental 
apparatus has been described in Section 4. A pair of 

40 kHz narrow-band piezoelectric transducers insonified 
the sample. The phase wavespeed measurements were 
performed in the Fourier domain by using a standard 

intercorrelation routine [29]. A precision in the order 
of 0.1% was achieved. Due to the spatial shift that 
occurs when the ultrasonic beam crosses the sample at 
nonzero incidence SnellLDescartes’ law of refraction is 

used in order to position the receiving transducer. 
A polar diagram of the tortuosity in a Tramico air- 

saturated sample is shown in Fig. 8. The agreement 
between theory and experimental data is quite accept- 
able. The recovered principal tortuosities, i.e. x,~ = 
1.22kO.01 and x,i= 1.34kO.01, are within 1% of 

measurements done at normal incidence on samples cut 
along in-plane and out-of-plane principal directions, as 

given in Table 1. It should be pointed out that the small 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
1.5 1.0 0.5 0.0 0.5 1.0 1.5 

1 -_ 

X 

Fig. 8. Polar plot of the tortuosity versus transmission angle for a 

reticulated plastic foam (Tramico type). Comparison between theory 

(solid line) and experimental data (3). Axes r and 3. respectively, are 

the in-plane and out-of-plane (i.e. the normal to the surface of the 

plate) geometrical axes of the sample. The principal acoustical axes of 
the sample, which are almost aligned with axes T and 7. are shown 

with dashed lines. There is a 4 difference between both sets of axes. 

The recovered principal tortuosities are Y,, ) = I .22 +O.Ol and 

G! or, = 1.34kO.01. The black square corresponds to a measurement 

done at normal incidence along principal axis I on a sample cut from 
the same thick plate. as shown in Table I (r,, =: 1.33+0.01 ). 
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discrepancy between the two sets of values might be due 

to the fact that the measurements were not carried out 

exactly in the same areas of the sample. An interesting 

finding is the fact that the principal acoustic axes of the 

sample do not coincide with the geometrical ones [30] 

(i.e. along the normal to the sample and in the plane). 

The inversion routine done on the tortuosity predicts a 

4” difference on the tortuosity, as shown in Fig. 8. Such 

symmetry is also observed in the measurements of the 

amplitude of the transmitted signal as shown in Fig. 9, 

its maximum being shifted by 9”. Consequently, our 

technique enables the orientation of the principal acous- 

tical axes inside the sample to be determined. Obviously, 

there might exist additional Euler angles (up to two) 

[30] when principal axes are oriented in totally arbitrary 

directions. In such a case, one needs to probe various 

nonprincipal planes of propagation in order to recover 

the orientations of the principal axes. Such inversion 

routines have not been implemented so far. Interestingly, 

we have observed other results where the angular paral- 

lax is more pronounced (in the range of 1 O-20”). 

Some porous materials are almost isotropic. An exam- 

ple is provided for a fibrous glass wool in Fig. 10, where 

the tortuosity versus angle is a circle. The recovered 

principal tortuosities are g(ca3 = ami = 1.05 + 0.005. This 

result is also a general check of the implementation of 

the signal processing and data analysis schemes. It 

should be emphasized that this porous medium has a 

tortuosity close to 1. In fact, when the tortuosity is 

exactly equal to 1, there cannot exist any anisotropy. 

Consequently, one can expect significant anisotropy 

effects for porous media having large tortuosity (in the 

range of 2-3). 
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Fig. 9. Plot of the amplitude attenuation versus incidence angle for the 

reticulated plastic foam (Tramico type) studied in Fig. 2. The vertical 

solid line (along 0”) shows the normal to the sample (i.e. axis 3). The 

dashed line represents the angle of incidence corresponding to the 

maximum of the transmitted amplitude. There is a 9” shift from axis 
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Fig. IO. Polar plot of the tortuosity versus transmission angle for a 

fibrous glass wool. Comparison between theory (solid line) and experi- 

mental data (as shown with blank squares). Axes T and 3 have the 

same meaning as in Fig. 8. The recovered principal tortuosities are 

%D3=GJ1- ~ 1.05 * 0.005. 

7. Review of Biot theory 

More than 40 years ago, M.A. Biot [31L34] did 
propose a semi-phenomenological theory which provides 
a rigorous description of the propagation of acoustical 
waves in porous media saturated by a compressible 
viscous fluid. Such diphasic materials are supposed to 
be elastic and homogeneous. This theory derives the 

equations of motion of each phase (i.e. the solid frame 
and the fluid) based on energy considerations which 
include the inertial, the potential and the viscous cou- 
pling between the two phases. For an isotropic porous 
medium, three different bulk modes are predicted, i.e. 

two compression waves and one shear wave. One com- 
pression wave, the so-called wave of the first type or 
fast longitudinal wave, and the transverse wave are 
similar to the two bulk waves observed in an isotropic 
linear elastic solid. The other longitudinal wave, called 
a wave of the second kind, or slow wave, is a highly 
damped and very dispersive mode. It is diffusive at low 

frequencies and propagative at high frequencies. It has 
been observed for the first time by Plona in 1980 [35] 

and in subsequent years by others [36-381. Others 
workers (e.g. Van Dongen et al. [39]) have studied the 

propagation of weak shock wave in permeable foams 
with the linear Biot theory. Biot theory was initially 
introduced for petroleum prospection and research. Due 
to its very general and rather fundamental character, it 
has been applied in various fields of acoustics such as 
geophysics, underwater acoustics, sismology, etc. 

A short review of the Biot theory is provided next. 
To derive the equations of motion for both phases, one 
needs to first evaluate the various energy terms, i.e. 
potential, kinetic and dissipative. If u and U represent 
the displacement fields of the solid phase (s) and of the 
fluid (f), and by introducing the spatial derivative 
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operator Lij, the three energy terms can be written 
the following form: 

in 

E, = t (El;Ciik,Ekl+ Re’ +2~eQ,j6ije), (31) 

E,=: (p,,ti“ci+2p,,tiTIj+p,,iiTii), (32) 

E,=ih(co)(ti-0)‘. with h(ro)=d2: 
0 r 

l+FjX. 

(33) 

where the function X(w) was expressed in Section 2 
by Eq. (6). The densities /)rl and /jZ2 and the inertial 

coupling term p12 are linked to the actual density of the 
solid frame p, and those of the fluid pr by the following 
relationships: 

1112 = -(a,, - 1 b#wr. 

1’11 =( 1 -4,P, -P12, 

v22 =4P-P,2. 

PllP22 -PI2 =o. (34) 

where 4 and SI,, respectively, are the porosity and 
tortuosity (as introduced in this review in Section 2). 

The next step is to utilize the Lagrange formalism to 
derive the equations of motion for both phases: 

(7Eo 
__ =o. 

iiti 
(35) 

The same equation is also written by replacing u by I/ 
for the fluid. By using Eqs. (31))( 34) for the three 

energy terms, and with the help of the L operator, as 
given in Eq. (30), one finally obtains 

(36) 

LeQ,,S,,LijU+L~RLijU-02(p,,U+P22U)=0, (37) 

where the tilde densities are linked to the nontilde ones 
through the damping function b(w) as expressed by the 
relationships (each density is consequently complex, the 
imaginary part being responsible for damping due to 

viscous effects): 

331 

b(u)) b((o) 
022 = P22 +.i ---; p,, =p12 -j __. 

(I) (1) 

(38) 

When limiting the analysis to the isotropic case, the 

stiffness matrix of a porous frame is given as the usual 
expressions for a linear elastic solid: 

[C,.ll= 

A+2N A A 0 0 0 

A A+2N A 0 0 0 

A A A+ZN 0 0 0 

0 0 0 N 0 0 

0 0 0 0 N 0 

0 0 0 0 0 N 

where the rigidities are given by 

N=E(1+/ls)/2(1+v), 

A=[( 1 -~)2/$]K~(~)+[2Nv/( 1 -2v)], 

R=dK,(w), Q=(l -$WJw), 

(39) 

(40) 

where tls is the structural damping coefficient of the 

frame and K,(w) =&//I(o). These coefficients reduce to 
the usual Lame parameters of a linear elastic solid 1, 

and 11 as expressed from the Young modulus E, and the 
Poisson ratio V, just by putting the porosity equal to 1 
(4 = 1). Next, for the case of isotropic porous media, 
the plane wave solution of Eqs. (36) and (37) is studied 
with the customary scalar and vector potential decompo- 
sition, respectively, for the compression and shear waves. 
For the case of the longitudinal wave this can be written 
down as u = VP”; U =VC$, with V = [ir,i?_u, c?/?Y, i,/?:]. 

This yields 

where P = A + 2N, providing: 

k2 = 
d 

1.2 
2(PR - Q’) 

VP22 +RP,, -2QP12 +lh (42) 

with: A=(Pp,, + R/3,, -2Qp,,)’ 

-4(PR-Q’)(P,,P,,-P:,) (43) 

where the two wavevector solutions 1 and 2, respectively, 
are given by the + and - signs in Eq. (43). From these 
expressions, one can then obtain the ratio between the 
displacement amplitude in the fluid to the one of the 
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solid frame: 

(44) 

For the transverse wave the calculations proceed in a 
similar way, by replacing the gradient operator by a 
curl, i.e. us=V x Ic/“; uf=V x $‘, and yields 

Np2II/“+oZp”,,lCI”+CU2p,,~f=o, (45) 

02pi24P+W2P”22$f=0, (46) 

03 (p”llP22 -82) 
k: = N ; ~3&=-!%. s 

P22 Ic/; p”22 

(47) 

When dealing with anisotropic porous materials, one 
starts from the linear elasticity behavior equation written 
down in tensorial form: 

Qijdij Ekl I[ I R e ’ 
(48) 

where i, j, k, I= 1, 2, 3, and where oij and s represent 
the stresses, respectively, in the solid and in the fluid, 
Ek[ and e being the corresponding strains. The elasticity 
tensor is denoted by Cijkl, the compressibility modulus 
of the fluid by R, and Qij is the diagonal coupling tensor 
which is of the potential type Biot himself did study 
anisotropy of porous solids [32] and one can find the 
coupled equations of motion in that reference. More 
recently various authors have revisited the anisotropic 
Biot theory, see for example Ref. [40]. 

8. Characteristic surfaces of the anisotropic Biot waves 

From Eq. (48) it is then possible to derive the equa- 
tions of motion, respectively, of the solid and fluid 
phases which are written as 

a2Ui a2 Ui d2U, 

PI1 at2 - +p12 - = Cijkr - 

a2ui 

at2 dxjdxk 
+Qjj- 

aXj2 

ah, a2 Vi 
PI2 &2 -+p22- 

at2 
=Qjj$+Rs. (49) 

J I 1 

where the densities are kept isotropic (see previous 
section). 

The next step deals with searching solutions in the 
form of plane waves. Adding dissipative terms to 
Eq. (49) results in introducing complex densities (see 
Eq. (38)). In such a case, the wavespeeds are complex 
and dispersive (cf. Section 7). 

In this work we have developed routines, based on 
the standard Biot model, which compute the various 
characteristic surfaces (slowness, phase and group veloc- 
ities) in a given plane for anisotropic porous media. By 
increasing the weight of the coupling constants, one can 
continuously vary from the limit case of anisotropic 
solids with no porosity to a number of different porous 

media. When the coupling terms are not equal to zero, 
one finds four instead of three propagating modes, the 
two other eigenvalues being complex, meaning in turn 
that the two remaining solutions do correspond to some 
evanescent modes. The slow transverse mode is 
unchanged. The fourth mode often called the Biot mode 
[35-381, which is very similar to the pseudo-thermal 
wave (see Section 10 for further details) observed in 
dynamic thermoelasticity, has always a very small wave- 
speed and is very highly damped. 

We restrict here to the simplier case of real densities, 
which is, however, sufficient to describe the main features 
related to anisotropy. Writing down the calculations 
yields the following compatibility equation: 

r11 -P11 v2 r12 r13 

r12 r2, -pll ~2 r23 

r13 r2, r3, -pll ~2 

r14 - p12 ~2 r 24 r 34 

r15 r2, - p12 v2 r3, 

r16 r 26 r3, -p12 ~2 

r14 - p12 ~2 r15 r16 

r2, r2, - p12 v2 r 26 

r 34 r35 r36 -PI2 ~2 
=o. 

r4, - p22 v2 r4, r 46 

r45 r5, - p22 ~2 r 56 

r 46 r56 r66 -p22 v2 

(50) 

In such an equation, V represents the phase wavespeed 
(V=o/k), and the terms ri, are linked to Cijkl, R and 
Qij. For instance, the r components of the top left 3 x 3 
sub-determinant is nothing else than the Christoffel 
tensor, i.e. ri, = cijklwjwk, where i, j, k, I= 1, 2, 3, where 
w is the unit vector along the direction of propagation. 
The full determinant has four real roots corresponding 
to propagating modes as well as two additional imagi- 
nary roots which do not contribute to the propagation. 
By supposing the propagation to take place in plane 
( 1,3) of a transverse isotropic solid where 
wl = sin H, w2 = 0 and wf3 = cos 8, then the above determi- 
nant has the following simplier form: 

V~KP,~ p22 -PI,) V2-p22r22i 

rll -_pll V2 r13 r14 -p12 V2 r,, 

r13 r3, - pll V2 r3, r,, -p12 V2 
X 

r14 - p12 ~2 r3, r, - p22 v2 r4, 
=o, 

r16 r;, - p12 v2 r4, r,, - p22 ~2 

(51) 
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where 

r13 =(F+L)~~',w'~; r,, =zbt+, (52) 

with A + 2N=C, ,=Czz, A =C12, F=C13, C=C,,, L= 

C44=C45, N=C,,, M=Q,,=Q2,, and Q=Q,,. 
Accordingly, there exists a trivial root, i.e. 

V= dlp22r22/(i)l 1 pz2 - &), which is identical to 

a when plZ=O. which is the velocity of a SH 

type wave. Some significant numerical results obtained 

with the above procedure are plotted on Fig. 11. Further 
details are provided in Ref. [42], or elsewhere 1431. 

9. Transmission coefficient for a Biot anisotropic porous 
layer 

In this section, the problem of a plane wave impinging 

a fluid-porous medium plane interface with an oblique 
angle of incidence 0 is considered. The porous material 
is supposed to belong to hexagonal symmetry. It is 
described in the frame of Biot theory. Solutions for the 

reflected and refracted waves which verify the Biot 
equations of motion are sought. In order to solve this 
problem the wavespeeds (cf. Section 8) and the polariza- 
tions of the various modes [44], which are propagated 
in the porous medium, are required. For that purpose, 
the classical boundary conditions introduced by 
Deresiewicz and Rice [45] and Rosenbaum [46] are 

used. The reflection and transmission coefficients are 
then calculated by using the Poynting theorem as applied 
to acoustics [41.47]. Numerical simulations are designed 
to obtain these coefficients versus the angle of incidence 
of the incident wave. 

The propagation is done in plane XZ, where x lies at 
the surface of the material while z is along the thickness. 
The fluid fills the negative half space (,-CO) and the 

porous material extends on the other half space (:>O). 
The angle of incidence of the wave in the fluid, at the 
interface z =O, is denoted (1, as shown in Fig. 12. Due 
to mode conversion at the interface, there exists one 
reflected and three refracted waves. It should be noted 
that the fourth transmitted wave, whose polarization is 
along (or close to for a quasi-transverse wave) the axis 
orthogonal to the propagation plane is the second shear 

wave. This mode does not exist for the geometry consid- 
ered here because it cannot respect the continuity of the 
displacement field as the polarization of the incident 
wave is in plane xz and accordingly does not have a 
component along y. Due to anisotropy the polarization 
of the various reflected and transmitted modes are not 
generally pure, but instead quasi-longitudinal or quasi- 

3 ’ 

3 

km/s __ 

4’ 

1 2 3 km/s 

Fig. I I. Characteristic surfaces (wavespeed curves) in plane ( I, 3) of 
a transversely isotropic porous material. The properties of the material 

are the following: C,, =26.1 GPa; C,,=65.5 GPa: c‘,,= 10.5 GPa; 

C,,=8.50GPa; C,,=9.58GPa: C‘,2=C,1-2C’~h=9.31 GPa; ,‘,,= 

2.108gcm-“; /)22=1 gem-‘; 0,~=0.1 gem ).(a) M=Q=R=0.5SI: 

(b) .M=Q=7.5 SI; R=5 SI. The solid lines represent the group wave- 

speeds. The slow transverse mode nearly has identical phase and group 

wavespeeds. 

transverse. However, the SnellLDescartes law of refrac- 
tion is verified in this case. It can be stated in the form 

0 (0 

- sin 0 = - sin sli = 0, (53) 
(‘0 vi 

where co is the incident wavespeed and vi is the velocity 
of the transmitted fast (i= 1) and slow (i= 3) quasi- 

longitudinal waves and quasi-transverse (i=2) waves. 
The quantity xi corresponds to the refraction angles. 
The viscous damping effects are neglected here, but they 
can also be included in the treatment. Their influence 
does not modify the structure of the above equations, 
as was stated in Section 8. They can simply be taken 
into account by adding an imaginary part in the p,2 
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fluid medium 

porous medium 0 

Fig. 12. Geometry of the problem. I, incident compressional wave; R, 

reflected wave; Tl,, transmitted fast compressional wave; Tl,, 

transmitted slow compressional wave; r,, transmitted shear wave. 

coupling density [ 10,371. The boundary conditions for 
this problem are written as follows: 

( 1) Continuity of the normal stress 

((T,, SS)(,=gf = --pIz=o~. (54) 

(2) Continuity of the shear stress 

gxzIz=o+ =o. (55) 

(3) Continuity of the normal particle velocity 

(1 -$)z&()+ +$&lz++ = O;IZ=o~. (56) 

(4) Continuity of the fluid pressure 

sI,=o+ = -&$=o-. (57) 

The expansion of the above four equations yields the 
following set of equations: 

(2 + $)I;=,+ =O, 
(1-$)ti,l,=,+ +$OZIZ=o+ =@Jz+, 

(58) 

(59) 

(60) 

Mdu, 
ax z=O+ +e Iz~o++f2+~)I;_o+ 

= -4CP’ +Ff)L=o-, (61) 

The displacement fields u and U for the solid and fluid 
phases of the porous medium are due to the contribu- 

tions of various modes as written in Eq. (62), while the 
displacement field in the external fluid is given by 
Eq. (63). 

U= 1 Cidi exp[j(r~~t--ax--;,i=)], 
i=l 

U= $ CiDi exp[j(cut--x--;~i-_)], 
i=l 

(62) 

(63) 

where the amplitude of the incident wave is normalized 

to 1, and those of the reflected wave is noted u,, Ci are 
the amplitudes of the refracted waves, di and Di are the 
polarization vectors of the frame and the fluid, respec- 

tively, and where ;‘i=((U/VI) cos xi. By reporting these 
expressions for u, U and U’ in Eqs. (58)-( 61), we finally 
obtain 

i$I CiI.(F+M)Odxi +(C+ Q)Yidzi +(Q+R) 

x((7D,i+~iDzi)]-PfOCoUr =pfOlC(J, (64) 

i Ci[(Gdzi +rjdxi)] +Oll, =O, (65) 
i=l 

~ Ci[( 1 -~)d;i +~D,i)]+U,COS n=COS H, (66) 

i=l 

‘4P fWC0. (67) 

The solution of the above set of algebraic Eqs. (64)- 
(67) enables to determine the amplitudes of the various 
waves. The reflection and transmission coefficients are 
then calculated from the ratios of the acoustic intensities 
of the reflected and transmitted waves to acoustic inten- 
sities of the incident wave. The intensities themselves 
are defined by the absolute value of the Poynting vector 

as given by Auld [41]. Its expression for the case of a 
plane wave propagated in an isotropic porous medium 
was given recently by Wu et al. [47]: 

P= -jo[e,(u,a,, +u,~J~, + UXs) 

+eZ(u,oXZ +u,bZ_ + UJ)] (68) 

where e, and e, are the unit vectors, respectively, along 
the x- and ;-directions, and where ~ij and s, respectively, 
are the components of the stresses applied to the solid 
skeleton and to the fluid. The calculation of Eq. (68) 
for the three modes yields the corresponding acoustical 
intensities which are 
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(a) longitudinal waves 

1, =(G[(Vr +YkPZ)2 +(rVClz +YkP3)211’2 (69) 

1-11 =(A+2N)d:~+Ld:,+2Mdx,D,,+RD&, 

112 = (L + F&d:,, + Mlixk D,, + Qdzk D,, + RD,, DLli. 

p3 = Ld.:, + Cd:$ + 2Qd..!lk D,, + RDf,, 

where k = 1 for the fast longitudinal wave and k = 3 
for the slow longitudinal wave; and 
(b) transverse wave 

r2 = c0c; 

x {[o((A + 2N)d;, + Ldf2) + y,(F+ L)dx2dz212 

+[;*?((A +2N)d,2, + Ld:2)+a(F+L)dx,dz2]211’2. 

(70) 

The intermediate calculations are given in the Annex of 
Ref. [44]. By taking the limit case of isotropy in the 

above equations, one recovers quite easily the theoretical 
expressions obtained by Wu in his reference paper [47]. 

To numerically validate the present model, which is 
adequate as well for anisotropic porous media, it is 
possible to check the numerical results presented by Wu 
for the isotropic limit case, when considering exactly the 
same parameters. This has been done in Ref. [44] (i.e. 

see Fig. 13). where the Wu results (see Figs 3 and 4 in 
Ref. [47]) are exactly retrieved. The conservation of 
energy is numerically verified, which is a correct result 

for a lossless porous material. It should be emphasized 
that the general shape of the curves is quite similar to 
what is obtained for elastic or viscoelastic nonporous 
materials (e.g. see Refs. [48,49]). The major difference 
deals, for porous media, with the existence of the Biot 
mode (or slow longitudinal wave). The amplitude of 

0 

0 IO 20 30 40 SO 60 70 80 90 

angle of incidence (“) 

Fig. 13. Energy reflection and transmission coefficients versus angle of 

incidence. (-- --) Fast compressional mode; (--- ) slow compres- 
sional mode; (- - -) shear mode; (- -) reflection mode. Numerical 

data used in the computations are: P = 10.4 GPa: Q= 1.1 GPa: R= 

0.8 GPa; N=2.8 GPa; /‘=5x 10’ Hz; $=0.X+; x,=1.79; p,, = 

1.84 gem-“: p,,=~O.?gcm~? p,,=0,7gcm~“: v,=2657.2ms~‘: 

vz=935.8msM’: +=1281.4ms~‘; v=l500ms~‘. 

this mode is always very small, explaining in turn why 

in many experimental configurations it is difficult to 

observe. 

10. Analogy with the anisotropic theory of 
thermoelasticity 

The theory of thermoelasticity when applied to static 
problems allows one to predict the nature and distribu- 

tion of stress fields due to thermal fields [ 501. This is a 

basic tool in manufacturing engineering involving the 
use of temperature gradients during fabrication pro- 

cesses. The application of this theory to dynamical 
problems is not a trivial matter. but has been extensively 

described, at least for isotropic solids, by several authors 
[51,52]. In its basic isotropic version the equations of 
thermo-elasticity are 

the equation of motion 

/~~ii~ =“i,,j (i-i= 1,2,3), 

~- the Duhamel-Neumann equation 

(71) 

oii= IRui,j-~,(3~~+2~o(T-To)lcii,$-2~~~,j 

(i..i= 1.2,3), 

~ the heat conduction equation 

(72) 

k-~*T=~~C”~+~,(3~“+211)T~ti~.~ (73) 

In these equations u is the displacement field, p, the 
density of the material, cii the stress tensor. r, the 
coefficient of linear expansion, i, and ~1 the Lame elastic 
constants, T- T,, the difference of temperature from the 
ambient, 6ij the Kronecker delta, ~~~ the strain tensor, 
C, the specific heat at constant volume, and ti the 
thermal conductivity. 

Eqs. (72) and (73) can be generalized for an aniso- 
tropic solid in the following form: 

oij = Cijklck, - CijklJtk,(T- To), 

and 

(74) 

~ijT,ij =p,C, ~+ ToCijkl~tt,iij, (75) 

where Cij~r is the stiffness tensor, tiij the thermal conduc- 
tivity tensor and xtkl the thermal expansion tensor. 

An unphysical property of the diffusion-type heat 
equation [i.e. Eq. (73) or Eq. (75)] is that a sudden 
change in temperature made at some position in the 
solid will be instantly transmitted everywhere, giving 
rise to an infinite propagation speed. This feature was 
already recognized in the last century by Maxwell, and 
requires a modification of the Fourier law by adding a 
supplementary term [53,54], i.e. Eq. (75) is rewritten 

-Yi.i =~),C”~+ T,Cijk,rtkl~ij, (76) 
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and 

7ijqj + qi = - Ki,i T,i (77) 

where qi is the heat flux vector, and 7ij the relaxation 
time tensor. When 7ij=0, Eq. (77) reduces to the stan- 
dard Fourier law, and Eq. (76) is then identical to 
Eq. (75). The introduction of the relaxation time tensor 
converts the diffusion equation into a telegraph-type 
equation which is no more than the Helmholtz equation 
with an additional diffusive term [55]. The use of the 
standard Fourier law instead of Eq. (77) is, however, 
sufficient for most problems. The introduction of the 
additional relaxation term is necessary to explain the 
origin of the second sound at very low temperature in 
crystals, and has been extensively reviewed by Maris 
[56]. In the limiting case of an isotropic solid, Eqs. (71)- 
(73) may be rewritten after substitution of Eq. (72) into 
Eq. (71), in the vector form as the set of two coupled 
differential equations: 

k-V2 T= ps C, r+ T,a,( 3). + 2p)div ri, 

and 

(78) 

pV% + (iL + p) grad div u = rt( 33. + 2,~) gradT+ p$. 

(79) 

By using the customary decomposition [57] of the 
displacement field into a curl free and a divergence free 
component, i.e. U=U, + u,, where div II, =O, and curl 
ui =O, and by applying the curl operator to both sides 
of Eq. (79) one obtains 

curl(p& -,@u,) =O, (80) 

which is nothing else than the ordinary wave equation, 
as the quantity between parentheses should identically 
cancel because its divergence is zero. In turns, this means 
that the transverse wavespeed is c, =( ;i/ps)“‘. In other 
words, the transverse wave is uncoupled and its wave- 
speed is unchanged by taking into account thermoelas- 
ticity. It could also be shown [ 5 1.58 ] that such transverse 
wave is undamped and undispersed. These properties 
are due to the fact that no dilatation uj,j accompanies 
the transverse wave. 

The results are obviously quite different for the longi- 
tudinal wave. Application of the divergence operator on 
Eq. (79), provides a new equation: 

div[p,ii, - (iL + 2~)V2u, + c(,( 31, + 2~) grad T ] = 0, (81) 

which reduces to the standard wave equation for the 
longitudinal wave, i.e. p$, -(i. + 2~)V%, = 0, only if the 
coupling term in grad T is neglected, i.e. if the thermal 
expansion coefficient CY, is taken equal to zero. In the 
general case of thermoelasticity, Eq. (81) is coupled to 
Eq. (BO), and the solutions are a longitudinal quasi- 
elastic wave plus a quasi-thermal wave which are cou- 
pled. The quasi-elastic wave is damped and dispersed in 

a very complex manner. Its wavespeed is different from 
the pure longitudinal wave, i.e. cI = [(i +2p)/p,]‘!*. There 
is a small corrective term [51,58] that is given by 

x1c(4-3c) 

8( 1 +E)~ +0(x4) 3 1 (82) 

with 

(3G )’ T, 
E= 

p,(iL + 2/L)C” ’ 
K=i.+ t p. and x=co~/(p,C,c:), 

(83) 

where w is the angular frequency. 
For most solids, at medium frequencies (-a 

few MHz), x is very small (in the range of 1O-5-1O-6), 
and as E, is also very small compared to 1, I’, can be 
simply approximated by V, z c, (1+~/2). In fact the 
correction is systematically very small, in the range of a 
few per cent. When dealing with anisotropic solids, the 
physics involved is much more intricate. In such a case, 
the three bulk modes are quasi-elastic waves which are 
coupled to the quasi-thermal wave. Nevertheless, the 
problem is not formally intractable and has been solved 
by various authors (see for instance the work done by 
Banerjee and Pao [ 59-611, or Sharma and Singh [62]). 
Starting with the general equations of thermoelasticity 
(including the influence of the relaxation tensor), e.g. 
Eqs. (71), (74), (76) and (77), these are rewritten after 
substitution of Eq. (74) into Eq. (71) in the form 

Cijkl~l,kj -_lij T*~.j = psiii, 

-9i.i =psc, 7-0s + T,mijtij,i. 

and 

(84) 

(85) 

?ij4i + qj = -ki,i T,~.j, 

where 

(86) 

Z=(T-T,)/T,, “Jij=CijklMkl, 

and 

Eij =(lli,j + Uj.i)/2. 

The next step consists in considering plane harmonic 
waves for U, q and T of amplitudes #, Q, and 0, and 
phase j(wt-kw . v). One then obtains the following 
system of homogeneous equations: 

(k2Cijkl 1 k IV.W -psw2hiI)‘#I +~m,jwjkT,,O=O. (87) 

- (OZij + ~iiij)Q,j + k~ij~l’,i T,O =O, (88) 

-~~~ij~~~iT~o~i+k~~iQ~i-P,C,T~wO=O. (89) 

The secular equation associated to this set of homo- 
geneous equations is a 7 x 7 determinant [60] where the 
upper left part of it constitutes the 3 x 3 subdeterminant 
related to the uncoupled propagation of the bulk waves, 
the remaining part of the determinant being linked to 
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the heat flux Q, and the temperature 0. The complete 

determinantal equation is eighth degree in k with four 

pairs of complex roots corresponding to the four quasi- 
waves, and tenth degree in (11 with two extra roots which 
are purely imaginary and thus do not contribute to 
propagation. It is possible to numerically compute the 

eigenvalues and the eigenvectors associated to such 
secular equation, and this has been done for various 

classes of symmetry where the determinantal equation 
specializes in much simplier forms [59.60], and thus to 
produce graphs for the slowness, velocity and wave 
surfaces. A pair of characteristic of such examples taken 

from these references are shown on Fig. 14. They clearly 
show the analogy between the thermal wave and the 
Biot mode. 

Il. Inverse problems for the characterization of 
anisotropic porous media 

The objective is to determine some material parame- 
ters from accurate measurements done with ultrasonic 
techniques applied to the characterization of air-satu- 
rated porous media. We have seen in some of the 
previous sections that recovery of the anisotropic tortu- 
osities was possible from wavespeed measurements (cf. 

Section 6). and that a fit of anisotropic viscous charac- 
teristic lengths was allowed from reflection coefficient 
experimental data (cf. Section 4). We can provide here 
further details on another inversion scheme. Let us start 
with Eq. ( 10) written in the following form: 

(90) 

This expression clearly shows that the slope of the 
straight line 

is directly linked to the term 

The next step is to perform a phase velocity measurement 
(a characteristic example is shown for an air-saturated 
plastic foam sample on Fig. 15 ) with the help of a phase 
spectrum algorithm (e.g. Refs. [27,28] in Section 6). By 
achieving such measurements in two gases having mate- 
rial parameters (7 and B) sufficiently different (e.g. air 
and helium), the slopes are distinct. A simple linear 
regression is then providing the various parameters of 
interest. The tortuosity corresponds to w-+ + a,, i.e. 
l/G-+0. and consequently is the intersection with 
the vertical axis of the straight line $(cJJ)= 

(b) 

Fig. 14. Characteristic thermoelastic surfaces III anisotropic media. (a) 

Velocity surfaces in ‘He (010) at 0.85 K and I MHz. I unit= 

85 m s ‘_ (b) Slownesses surfxes Ihr sodium fluoride (010) at 17.3 K 

and 3.3 MHz. I unit=O.l04x IO ‘scm ’ Adapted from Refs. 

[59.60]. 

Hlinearized ( l/V%). An example of such linear regression 
is shown on Fig. 16 for the same material (air-filled 
plastic foam). Then the values of the two slopes as 
obtained in the two gases enables to retrieve the two 
characteristic lengths [63,64], see Fig. 17. It is interesting 
to note that the two lines should intersect at the origin, 
providing a cross-check on the precision of the determi- 
nation of the tortuosity. 

Another way to proceed is to design a nonlinear 
regression on the complete expressions for the phase 
velocity given in Section 2 [i.e. Eqs. (3)--t 7)]. e.g. when 
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Fig. 15. Dispersion curve (wavespeed as a function of frequency) on 

an air saturated Tramicoa plastic foam. 

I .47- 

1.46- 

1.3E-3 I .5E-3 1.8E-3 2.OE-3 2.3E-3 2.5E-3 2.7E-3 

Fig. 16. Characteristic example illustrating the linear relationship 

which exists between the real part of the squared propagation index 

versus the inverse of the square root of frequency. The tortuosity is 

determined by linear regression as the intersection of the vertical axis. 

On this example using Tramico@ and plastic foam, one obtains 

x,= 1.323. The slope of the straight line yields A=40.5 pm for the 

viscous characteristic length, while A’= 121.5 pm as determined by the 

BET method [8,9]. 

no high frequency approximation is done. In such case, 
this set of equations can be summarized in the following 
expression: 

%c c2(o) 
~ = @(A, A’, w), 

4 
where @(A, A’) is expressed from Eqs. (3)-(7). Eq. (91) 
in fact represents a set of N equations, where N is the 
number of wavespeed c(w) measured as a function of 
frequency on the dispersion curve. This number N is 
arbitrary large, and only depends on the sampling of 
the frequency domain (i.e. it is readily a few 10s in size). 
Eq. (91) is then overdetermined as there are significantly 
more equations than unknowns (three in this case, i.e. 
the tortuosity and the two characteristic 
following functional is then minimized 
square sense: 

4 %C2(~) 
1 

2 

-@(A, A’, co) minimum, 
w C: 

lengths). The 
in the least- 

(92) 

II 0,001 0,002 0,003 0,004 

Inverse square root of the frequency 

Fig. 17. Real part of the squared acoustical index of refraction for a 

plastic foam saturated by air or helium. 

by using a Newton-Raphson algorithm [65], or any 
other appropriate numerical method (such as the conju- 
gate gradient). For the Newton-Raphson method, one 
needs to solve the two following equations: 

a 4 cc, c2(o) I 
2 

- 

a/i w 

~ -@(A, A’, w) 

4 

=o; 

s 

4 

a&2(w) 

ak w 
___ -@(A, A’, w) * =o. 

4 1 (93) 

The iterative solution is given by the following expres- 
sions which make use of the Hessian matrix associated 

to the functional: 

t 9W 

(94b) 

This method is completely general and should allow 

to determine the three material parameters from the 
complete dispersion curve. When anisotropy is present, 
the same process is applicable, and each dispersion curve 
as obtained along a given direction of propagation will 
evidently yield different values of the two anisotropic 
parameters (the thermal characteristic length being iso- 

tropic from its definition; e.g. see Ref. [6]). 

12. Concluding remarks 

Porous media are astonishing materials. Due to their 
diphasic structure at the same time being solid and fluid, 
they behave like an equivalent fluid, and sometimes as 
an elastic solid. In many cases the displacement fields 
in the two phases are coupled, and the full Biot theory 
must be used. When dealing with highly porous (i.e. 4 
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close to 1) absorbing materials, the frame in most cases 

is not vibrating and the porous medium effectively acts 

as an ‘equivalent fluid’. Most of the porous media are 

anisotropic. For instance, the anisotropy of porous rocks 

is related to their formation. Air-saturated porous 

media, such as synthetic plastic foams exhibit as well 

some anisotropy [66,67], which is very often quite slight 

but still unmistakable. This anisotropy is related to the 

manufacturing process of the absorbing porous material 

(i.e. a polymerization chemical reaction for plastic 

foams). In the course of its fabrication, starting from a 

liquid mixture, the plastic foam expands by the prolifera- 

tion of the bubbles, which create after their rupture the 

three-dimensional porous frame. During the expansion 

process, some very subtle physical phenomena occur 

which are responsible for gradients in the properties of 

the foam (e.g. the foam in the bottom of the tank 

becomes denser), for heterogeneousness and for anisot- 

ropy. One very intriguing finding that has been realized 

is linked to the orientation of the principal acoustical 

axes which do not coincide with the geometrical ones 

[ 181. Again, this result is connected to the manufacturing 

of these materials. In the center of the tank, the principal 

axes are oriented along its sides, but when approaching 

the edges they become inclined because the expansion 

of the foam is restricted in that locations. Accordingly, 

the class of symmetry of this material must be close to 

the alleotropy which is found for wood species, that is 

the orientation of the principal axes being a function 

of the position. A further difficulty lies in the fact that 

these materials are also heterogeneous, as it is clearly 

visible from ultrasonic c-scan. Ultrasonic techniques are 

clearly valuable tools to decipher the intricacies of these 

anisotropic effects. We have shown in this review the 

type of theoretical models which are extensively used in 

that field, outlined the strong connection which exists 

with other coupled theories such as dynamical thermoe- 

lasticity (another coupled mechanism which is very 

similar is the coupling existing between the acoustic 

modes created in an air cavity and the solid vibrations 

of a cylindrical shell surrounding it). We have shown 

various approaches to tackle the anisotropic phenomena 

in acoustic materials by using ultrasonics, with a special 

mention for the inverse determination of constitutive 

parameters such as the tortuosity and the characteristic 

lengths (viscous and thermal). At present no other 

known method, besides ultrasound techniques, enables 

to provide detailed information on the anisotropy of 

these parameters including minute fluctuations and spat- 

ial variations. The state of the art in that field has been 

boosted during the last 5 years due to the many efforts 

in Le Mans and elsewhere [e.g. KU Leuven among the 

most active teams worldwide, having many fruitful 

collaborations with LAUM/IAM (Le Mans)]. 

Nomenclature 

A, C, F, M, Biot’s coefficients 

N, Q, R 
B 

CO 
C” 
e 

:” 
k 

K, 
K (0) 
ko 
6 
L 

P 
Pr 

PO 
r 

4 
R,i 

mij 

4 

s 

To 

T 
u 
u 
u 
V 

If 

-%I 

Z" 

a(w) 

KD 

%i 

4 

diij(w) 

/3(m) 

i' 

Yi 

square root of the Prandtl number 
sound velocity in air 
specific heat at constant volume 
strain tensor of the fluid 

Young’s modulus 

frequency 
imaginary unit 

wavevector 
compressibility modulus of air 

equivalent compressibility modulus 
static permeability 
thermal permeability 

sample thickness 
acoustic pressure 
Prandtl number 

atmospheric pressure 
position vector 
isotropic reflection coefficient 

transversally isotropic reflection coeffi- 
cient 

thermoelastic coupling constants 
real part of the refraction index 
stress in the saturating fluid 

ambient temperature at rest 
temperature 

displacement vector of the frame 
displacement vector of the saturating fluid 
Displacement vector of the external fluid 
acoustic velocity 
unit wave vector 

characteristic impedance of the free fluid 
characteristic impedance of the saturating 
fluid 
characteristic impedance of the saturating 
fluid along normal direction 
dynamic tortuosity 
tortuosity 
refraction angle 
coefficient of linear expansion 
tensor of dynamic tortuosity 
relative dynamic compressibility 
ratio of the specific heats 
components of wave vectors along the Z- 
direction 
viscous skin depth 
strain tensor of the frame 
fluid viscosity 
incidence angle 
isotropic thermal conductivity 
Lame parameter 
viscous characteristic length 
thermal characteristic length 
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P 

PL, 

V 

Ps 

Pf 
u 

Oij 

4 
w 

Lamb parameter 
structural damping coefficient of the 
frame 
Poisson ratio 
mass density of the frame 
mass density of the free fluid 
component of the wavevector along x- 
axis 
components of the stress applied to the 
frame 
porosity 
angular frequency 
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